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Abstract-Recently developed internal theories for inelastic solids are considered, and the consequences of
thermodynamic stability requirements are explored. The results are expressed in a form which permits
comparison with the stability postulates of Drucker and Ilyushin.

1. INTRODUCTION

In recent years considerable attention has been given to the study of the thermodynamic
foundations of the mechanical behaviour of non-linear solids. These studies (see, for example
Coleman and Gurtin [2], Valanis [1], Kestin and Rice [3], Rice [4], Lubliner[5], Nemat-Nasser [6]
for recent examples) are based on the concepts of internal variables and, while the degree of
generality and the details in various approaches may differ, the fundamental concepts are
essentially identical in each case. It appears, however, that the consequences of the requirements
of thermodynamic stability have not been fully explored. In this note we shall draw attention to
some of these consequences.

In particular, we shall discuss the relation between the consequences of stability in the
internal variable formulation and the quasi-thermodynamic postulates introduced in the early
stages of the development of classical plasticity by Drucker [7,8] and Ilyushin [9]. For this
purpose it will be sufficient that we formulate the thermodynamic description for solids which
undergo small deformations, so that the distinction between density and stress in the deformed
and undeformed configuration can be ignored. A generalisation of the major part of the work can
be accomplished without difficulty.

2. THERMODYNAMIC FORMULATION

In setting down the thermodynamic description of the mechanical behaviour of an inelastic
solid we shall follow the formulation of Kestin and Rice [3].

Equilibrium states of an infinitesimal element of an elastic solid satisfy the fundamental
equation

(1)

where u is the specific internal energy (i.e. the internal energy per unit mass), S is the specific
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entropy, Eu is the strain tensor and ~", (a = 1, .... , n) are independent internal variables whose
precise nature will depend on the solid under discussion. We shall be concerned with processes in
which the element passes through a continuous sequence of states which satisfy the fundamental
equation (1). Because such processes in inelastic solids are normally approximated only under
slow rates of loading, we shall for convenience refer to them as quasi-static processes.

At any instant during a quasi-static process, therefore,

. au. au. au i:
u = -;- s +-a. Eij + -::;c ;''''

uS Efj USa

In this equation we identify the temperature T,

T = au
as'

and the stress tensor (J'ii>

(2)

(3)

(4)

where p is the density. Further, we define P", as being equal and opposite to the internal forces
atIa~", which are conjugate to the internal variables ~""

(5)

The reversible work along a quasi-static path is

(6)

while the rate at which external forces do work on an element of unit mass is

(7)

It follows then that the rate of entropy production per unit mass due to energy dissipation t is

(8)

The Second Law requires that t > 0, and hence, since T > 0, at any instant we must have

(9)

In order to complete our description of the inelastic solid we must introduce a
phenomenological relation between the internal forces P", and the rate of change of the internal
variables ~"" In the simplest case we may put

(to)
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This equation will be referred to as the rate equation, and is subject only to the restriction that
inequality (9) must be satisfied.

Elimination of the internal variables g", from equations (3) and (4) by means of equations (5) and
(10) will provide what are usually referred to as the constitutive equations for the inelastic solid. We
shall not concern ourselves with the particular forms that these equations take except to note that
the constitutive equations for viscoelasticity, creep and plasticity can each be recovered by a
suitable choice of the fundamental equation (1) and the rate equations (10). It is important to note,
however, that a history of deformation which satisfies the constitutive relations is a quasi-static
process according to our definition.

3. STABILITY CONSEQUENCES

In order to investigate the stability consequences of interest in this note we construct a
conceptual isolated system which consists of a homogeneous element of unit mass of the
non-linear solid, a reversible heat source and a reversible work source. The reversible heat source
is in diathermal contact with the solid, and is at temperature ro. Its internal energy UH is given by

(11)

where SH is the entropy of the heat source. The reversible work source is mechanically coupled
to the non-linear solid so that it applies constant conservative forces p -1 U'ij 0 to the element. Its
internal energy Uw is given by

U", = (12)

to within an arbitrary constant which we may neglect. The total energy of the isolated system is
then given by

U= U +UH +Uw

= u(s, €ij, go<) + rOSa - p-lU'~j€ij. (13)

The energy minimum principle states that the unconstrained equilibrium state of the isolated
system is given by the values of the thermodynamic parameters which minimise U subject to the
constraint that the total entropy of the system S,

(14)

is constant. Taking variations about the unconstrained equilibrium state of the system, and noting
that in view of equation (14) 8sH = - 8s, we find that

(15)

Since arbitrary variations in s, €ij, go< are possible, necessary and sufficient conditions for 8U = 0
are that

Po< =0. (16)
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This equation defines the unconstrained equilibrium states of the system. From equations (3), (4),
(5) and (16) we may determine the values of the thermodynamic parameters so, Eijo, g", ° which
characterise the unconstrained equilibrium state (or states) of the conceptual system. Note that this
solution implies that g", is constant and hence g", = 0 in the equilibrium state. This in turn implies
that the rate equation (10) must be such that g", =0 when Pa =O.

Using equation (14), U may be written as

Noting that the Helmholtz free energy of the unit mass of non-linear solid is

f(T, Eii, ga) = u - Ts,

it is convenient to define

(17)

(18)

(19)

The energies U and Up differ only by a constant. The energy minimum principle now states that
Up should be a minimum in the unconstrained equilibrium state subject to the constraint that
T = TO. Since for a quasi-static process

(20)

this alternative form of the minimum principle provides the same unconstrained equilibrium state
that is given equation (16).

Now consider a state adjacent to the equilibrium state and characterised by TO, EW, g~). The
energy minimum principle requires that

(21)

Substituting from equation (19) and rearranging, this becomes

(22)

Since our isolated system is a conceptual convenience, and since YO, (Tiio can be arbitrarily
chosen, this inequality is in fact a restriction on the form of the Helmholtz free energy of the
non-linear solid. The restriction can be interpreted in two ways.

First, remembering that af/ aga = 0 for g", = g", 0, inequality (22) can be regarded as a statement
which requires some degree of convexity of the function f. Equation (22) can be written as

f(TO (1) I:. (1) f(TO 0 1:.0»( til 0) af +(I:.~(Il_I:.~)JL. (23)
, E l] ,~C\( ~ , E lh ~ a E lj - € ij aEiJ €1J=Ed~ ~~ ~..... a~a ~a=~./'

The precise nature of the requirements imposed by equation (23) is somewhat complex, and there is
probably little to be gained in enumerating them at this degree of generality. It can be noted,
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however, that a sufficient condition that equation (23) should hold is that f(TO, €ij, ga) should be
strictly convex for TO arbitrary but constant. This would also ensure that there exists a unique
euqilibrium state for the system.

Alternatively, on noting that

(24)

equation (22) can be written as

(25)

This inequality holds for any quasi-static process between the state YO, €~j, ga ° and the adjacent
state TO, €U\ ga(1).

Again, since the system we have created is merely a conceptual convenience, with TO, (J"~j

arbitrarily chosen, this result has relevance for an arbitrary element of non-linear material. We
may define relaxed states of the material characterised by thermodynamic variables TO, €~j, ga 0.

These states are identified by the condition that Pa = - af/aga = O. The entropy SO and the stress
tensor (J"~j are then obtained by the relations SO = - afIaT, (J"~j = p-} afIa€ij. These relaxed states
coincide exactly with the unconstrained equilibrium states of the conceptual system insofar as
the material element is concerned.

Now suppose the element is deformed isothermally in a process in which the constitutive
equations are satisfied from a relaxed state TO, € ~j, ga °to a neighbouring state TO, € U), ga(I). During
this actual process the rate equations will be satisfied; nevertheless the process is a quasi-static
process (according to our definition) since the internal energy of the element is at each instant
during the process given by the fundamental equation (1). Hence inequality (25) applies.
Furthermore, because the rate equations are satisfied, from inequality (9),

It follows then that for any element deformed isothermally from a relaxed state to a neighbouring
state, in a process which satisfies the constitutive relations,

(26)

4. PLASTIC MATERIALS

Models for plastic and visco-plastic materials may be characterised by a discontinuity in the
rate equation in that Paneed not be identically zero when ta = O. It is convenient to define a
function !/J(Pa), and to incorporate into the rate equation (10) the requirement that ta = 0 when
!/J(Pa ) < O. This will lead to the phenomenon of yielding in the constitutive equations. Behaviour
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of this kind generally arises as a deliberate idealisation of the actual rate equations; nevertheless
it is a useful idealisation under certain conditions and it is important to consider its implications
within the thermodynamic framework.

Returning to the conceptual system described in previous sections, the basic results remain
unchanged. However, we must now admit the possibility that the system cannot achieve an
unconstrained equilibrium state in a process which begins at a non-equilibrium state and proceeds
by the relaxation of constraints. This occurs simply because internal relaxation ceases when
l/I(P",) <0 and ~'" ==0. The system will reach a constrained equilibrium state in which, say,

if1(P~)<O. (27)

This constrained equilibrium state will depend on the process by which it is achieved even when
the Helmholtz free energy f is strictly convex.

We ask whether it is still possible to make statements similar to that of inequality (25) for
variations about a constrained equilibrium state. Let us compare the constrained equilibrium
state ro, dj, g~ with an adjacent state TO, ,,:;\ g",(I). The energy minimum principle is still
applicable in the constrained equilibrium state in the sense that the unconstrained parameters
take on values which minimise Up for T = P. Thus

Let us now suppose that f(P, Eij, g",) is strictly convex. It follows then that

f(T O (I) l:(I})-f(TO ",(I) t:*»(t:(J)_l:*)~ == _(l:(J)_l:*)p*
, € lJ ,~a , ~ lJ '':: a ~a ~ a at: <> {1} >I< ~a ~ a 0"

ba T '{lJ .en-

If we now add inequalities (28) and (29), we find that

(28)

(29)

Alternatively, this may be written as

constant. (31)

This inequality will hold for any quasi-static process between the state TO, dj, g~ and the state
TO, E\I), gaO).

As before, we may now consider an arbitrary element of the material. Let us define a relaxed
plastic state as any state T*, Etj , g~ for which if1(P~) < 0, P~ = - af/ag"" s* = - af/aT, utj = p-

1

af/aEij.
Suppose that the element is deformed isothermally in a process in which the constitutive

equations are satisfied from a relaxed plastic state T*, "tj , g~ to a neighbouring state T*, ,,\l', g~).

Inequality (31) applies to this actual process.
However, inequality (9) is not sufficient to ensure that

(32)
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and hence that

(33)

It is evident that a sufficient condition for inequality (32), and hence inequality (33), is

(34)

for Pa , ~a associated through the rate equation and t/J(P~) < O. Note further that if f is a strictly
convex function, as assumed, inequality (33) will hold for all choices of the final state and not
only for states neighbouring the initial state.

5. CONCLUSIONS

The quasi-thermodynamic postulates for time-independent plastic materials introduced by
Drucker [7] and Ilyushin [9] apply to processes in which an arbitrary material element passes
through a continuous sequence of relaxed plastic states, and hence may be compared with
inequality (33). It is evident that the net work,

I
,·.!I)

'I

,_ (O"ij - 0"1d d€ij,
'I

around a cycle in stress (Drucker) or a cycle in strain (Ilyushin) for either small or unlimited
changes in state is not required to be positive by thermodynamic stability considerations. This
can be ensured by the addition of an additional assumption, such as inequality (34); it is equally
evident that inequality (34) is conceptually identical to Hill's principle of maximum plastic
work [lO].

The more general result, given in inequality (26), applies to arbitrary time-dependent
materials. This result does not support Drucker's attempted extension[8] of his postulate for
time- independent materials to time-dependent materials.
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